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Abstract. We use discrete kinetic models to study the dispersion relations of the one-dimensional
plane-ultrasound-wave propagation in monatomic gases, which are fundamental in non-equilibrium
statistical thermodynamics. The results show that six- and eight-velocity models can capture the
propagation of the diffusion mode, which has not been reported on since 1965. A four-velocity
model is seen to capture the propagation of the sound mode in the higher-Knudsen-number regime
quite well when we compare our calculated results on the dispersion (phase speed and absorption)
relations with Greenspan’s measurements.

1. Introduction

There have been several investigations (measurements and theoretical papers [1–7]) concerned
with the analysis of the propagation of very high-frequency plane sound waves. Most of them
were numerical approaches, and are related to the initial-value problem for an unbounded
domain. Their aim was to describe the sound propagation for all ratios of the mean free path to
the sound wavelength. Ultrasound propagation in highly rarefied monatomic gases, i.e., gases
in which the ratio of the collision to the sound frequencyh = p0/ωµ is small (h is usually
termed therarefaction parameter, and is the inverse of the Knudsen numberKn, defined as
the mean free path of the gas divided by the sound wavelength;p0 is the reference pressure;µ
is the viscosity of the gas;ω is the circular oscillation frequency), had been studied by using
the linearized Boltzmann equation as the dispersion relation (i.e., describing the velocity of
propagation and the absorption of sound) in the early 1960s [8–10]. Considering the linearized
Boltzmann equation

∂f

∂t
+ ξ ·

∂f

∂x
= L[f ]

(where f ≡ f (ξ,x, t) is the continuous molecular distribution function,ξ denotes the
continuous molecular velocity,L is the linearized collision operator), regarding the nature
of intermolecular and/or molecule–surface collisions, it is convenient to consider the problem
in three distinct regimes of pressure which could also be classified according to the Knudsen
number (Kn) [6]:

(1) The classical regime. Quantities vary little over the mean free path or the mean time of
intermolecular collisions. Moreover, molecule–surface effects are quite negligible even
at short distances from the transmitter.
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(2) The frequency relaxation regime. The frequency of intermolecular collisionsfc is com-
parable to or smaller than the frequencyω/2π of the sound field. This regime is not well
defined unless the sound field is observed at large distances from the transmitter surface.

(3) The geometrical relaxation regime. The molecules are assumed to traverse the path from
the transmitter to the receiver control surface essentially without undergoing any inter-
molecular collisions.

The solution of the continuous Boltzmann equation depends primarily on the molecule–
surface interaction even though this term can only be approximately formulated. The kinetic
theory of gases has developed differently for neutral systems and fully ionized plasmas. The
major reason for this is that collisions are typically far more important in neutral gases or weakly
ionized plasmas than fully ionized plasmas. Consequently, the handling of the Boltzmann
collision integral is central to these theories. For the problem of the propagation of sound in
monatomic gases, we normally seek solutions forf of the form

f = f0{1 +φ(ξ) exp[i(k · x− ωt)]}
wheref0 is the Maxwellian distribution,φ is a small perturbation (φ � 1), andk is the
wavenumber.

It is difficult to assess their accuracy of those previous numerical attempts since they are
essentiallyad hocand insensitive to the many singular features of the solution. For example,
a polynomial approximation in the neighbourhood of a free flow was described by Kahn and
Mintzer [7]; this is much more likely to give an accurate representation in the high-frequency
regime, but again the error is hard to estimate and not all singular features are visible. Pekeris
et al [8] used the higher-order moment and polynomial approximations only for the linearized
Boltzmann collision operator and neglected the contributions of the higher molecular velocities.
Sirovich and Thurber [9] only evaluated the normal modes and did not solve the boundary value
problem [10].

With extended irreversible/reversible thermodynamics (EIT), however, researchers could
also study the ultrasound propagation in rarefied gases by including the time relaxation effects
in the classical Navier–Stokes–Fourier approaches [11] for the heat flux and viscous pressure
(which are of the order of the collision time). They just carefully madead hocadjustments
to the constants of the time relaxation for different physical applications. The approach is not
universal but depends on the specific problem considered.

Recently microtechnology and nanotechnology have produced many built-in sensors in
sub-micron (microchannels) or atomic-scale (nanochannels) environments by the use of surface
micromachining or other advanced processings. For example, researchers can put many
pressure sensors, streamwise and staggered, along the walls of the microchannel in order
to measure the pressure distribution along the channel [12]. In this situation, if the flowing
fluids are monatomic gases, the propagation of sound waves in this microchannel will be an
interesting problem which is similar to that of ultrasound propagation in rarefied gases [13].
Considering the complicated geometry near the walls, however—as there are many built-in
sensors along the walls—the boundary conditions are too difficult to apply for solving the
problem [14, 15]. We thus only consider the 1D propagation of plane sound waves near the
centreline region of the microchannel, neglecting the complicated real boundary conditions at
the walls and the transmitter/receivers.

The velocity of propagation of a sound wave can be classically determined by looking
for the properties of the solutions of the conservation equations referred to the Maxwellian
state. Recently some researchers used discrete [16, 17] or semidiscrete [18, 19] Boltzmann
models to study the 1D ultrasound propagation by calculating the speed of sound [16, 18]
or the dispersion relations [19]. Discrete velocity models were applied in the late 1970s for
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solving the discrete Boltzmann equation (DBE) which describes the time evolution of the
distribution function, giving the probability density of finding the dilute gas molecule in space
and time [20]. The primary approach is to use the discrete velocity instead of the continuous
velocity of the corresponding molecular distribution. To replace the continuous Boltzmann
equation (CBE), which is required whenever the mean free path of the gas molecules is not
negligible in comparison with the length scale of the problem considered, mathematical and
physical aspects of the DBE were intensively investigated again in the late 1980s [21].

In this presentation, we shall use the generalized 2n-velocity (n = 2, 3, 4) models
developed by Gatignol [20] to investigate the kinetic effects of the ultrasound propagation
in rarefied gases.

2. Formulations

The discrete Boltzmann equation is a mathematical model in the discrete kinetic theory of
gases, which defines the time–space evolution of a system of gas particles with a finite number
of velocitiesvi , i = 1, . . . , p. This model has the structure of a system of semilinear partial
differential equations of hyperbolic type that defines the evolution of the discrete number
densitiesNi = Ni(t,x). The simplified model, by considering only binary collisions—i.e. the
(2× n)-velocity model—is concerned with a one-component discrete velocity gas such that
the molecules can attain 2n velocities in thexy-plane. In particular, the velocity discretization
is characterized by

(i) |vi | = c,
(ii) vi + vi+n = 0,

(iii) vi · vi+1 = c2 cos(π/n) wherei = 1, . . . ,2n,

where the index is modulo 2n, i.e. i ≡ i + 2n. Such a model is called a planar 2n-velocity
model. If only binary, elastic collisions are taken into account, then the non-trivial admissible
ones (where this term is used to denote those collisions which produce non-vanishing terms in
the collision operator) are

head-oncollisions (vi , vi+n)←→ (vj , vj+n) ∀j 6= i, i = 1, . . . ,2n.

Also, the momentum and energy are conserved:

vi + vi+n = vj + vj+n

|vi |2 + |vi+n|2 = |vj |2 + |vj+n|2.
Moreover, all of the velocity directions after collisions are assumed to be equally probable.

For example, the four-velocity coplanar model that we shall use here isvi , i = 1, 2, 3, 4,
with

v1 + v3 = v2 + v4

(v1− v3)
2 = (v2 − v4)

2 = 4c2

(v1− v3) · (v2 − v4) = 0.

In this way, considering binary collisions only, the model of the discrete Boltzmann equation
proposed in [20] is a system of 2n semilinear partial differential equations of the hyperbolic
type:

∂

∂t
Ni + vi ·

∂

∂x
Ni = 2cS

n

n∑
j=1

NjNj+n −NiNi+n i = 1, . . . ,2n (1)
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whereNi = Ni+2n are unknown functions, andvi = c(cos[(i − 1)π/n], sin[(i − 1)π/n]);
c is the reference velocity modulus;S is an effective collision cross-section [20].

We linearize the above equations around a uniform Maxwellian state (N0) by setting

Ni(t,x) = N0(1 +Pi(t,x))

wherePi is a small perturbation. The linearized version of the above equations is

∂

∂t
Pm + vm ·

∂

∂x
Pm + 2cSN0(Pm + Pm+n) = 2cSN0

n

2n∑
k=1

Pk. (2)

Here,m = 1, . . . ,2n. In these equations, after replacing the indexm withm+n and using the
identitiesPm+2n = Pm, we have

∂

∂t
Pm+n − vm · ∂

∂x
Pm+n + 2cSN0(Pm + Pm+n) = 2cSN0

n

2n∑
k=1

Pk. (3)

Combining the above two equations, firstly adding then subtracting, withAm = (Pm+Pm+n)/2
andBm = (Pm − Pm+n)/2, we have

∂

∂t
Am − c cos

(m− 1)π

n

∂

∂x
Bm + 4cSN0Am = 4cSN0

n

2n∑
k=1

Ak m = 1, . . . ,2n (4)

∂

∂t
Bm + c cos

(m− 1)π

n

∂

∂x
Am = 0 m = 1, . . . ,2n. (5)

From Pm+2n = Pm, and withAm = (Pm + Pm+n)/2 andBm = (Pm − Pm+n)/2, we have
Am+n = Am, Bm+n = −Bm.

After some manipulations, we then have[
∂2

∂t2
+ c2 cos2

(m− 1)π

n

∂2

∂x2
+ 4cSN0

∂

∂t

]
Dm = 4cSN0

n

n∑
k=1

∂

∂t
Dk (6)

whereDm = (Pm + Pm+n)/2,m = 1, . . . , n, sinceD1 = Dm for 1= m (mod 2n).
We are ready to look for the solutions in the form of plane waves:

Dm = am exp i(kx − ωt) m = 1, . . . , n

with ω = ω(k). This is related to the dispersion relations of 1D forced ultrasound propagation
of rarefied gases. So we have(

1 + ih− 2λ2 cos2
(m− 1)π

n

)
am − ih

n

n∑
k=1

ak = 0 m = 1, . . . , n (7)

and

λ = kc/(
√

2ω) (8)

whereh = 4cSN0/ω ∝ 1/Kn is the rarefaction parameterof the gas;Kn is the Knudsen
number which is defined as the ratio of the mean free path of the gases to the wavelength of
the ultrasound.

Let

am = C
/(

1 + ih− 2λ2 cos2
(m− 1)π

n

)
whereC is an arbitrary unknown constant, because here we are only interested in the eigen-
values of the above relation. The eigenvalue problems for different 2n-velocity models reduce
to Fn(λ) = 0, or

1− ih

n

n∑
m=1

1

1 + ih− 2λ2 cos2((m− 1)π/n)
= 0. (9)
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We solve then = 2, 3, and 4 cases separately, i.e., the four-velocity, six-velocity, and eight-
velocity cases. The corresponding eigenvalue equations take algebraic polynomial forms [22]
with the complex roots being theλ-values.

For the(2× 2)-velocity model, we obtain

1− (ih/2)
2∑

m=1

[1/{1 + ih− 2λ2 cos2((m− 1)π/2)}] = 0. (10)

Likewise, we have, for the(2× 3)-velocity model,

6λ4 − (15 + 22ih)λ2 − 8h2 + 14ih + 6= 0 (11)

and, for the(2× 4)-velocity model,

k0λ
8 + k1λ

6 + k2λ
4 + k3λ

2 + k4 = 0 (12)

with

k0 = 4b k1 = −12b − 10ĉ k2 = 13b + 12ĉ + 9bĉ

k3 = −6b − 10bĉ − 4h2ĉ k4 = 3bĉ + ĉ2b + 3bh2ĉ

whereb = 1 +h2 andĉ = 1− ih.

3. Results and discussion

After we obtain the complex roots (λ) for the polynomial equations given above [22], we
obtain the values for the (non-dimensional) sound dispersion (real part:λi ; which is a kind
of the measure of the ratio between the propagating and the reference sound speeds) and the
attenuation or absorption (imaginary part:λi). The spectra of the(2× n)-velocity models for
n = 2, 3, 4 look entirely different [21]. To compare with previous results, we have already
found the rules of transformation between different researchers’ parameters, likeh and the
inverse Knudsen number. The results for different models are shown in figure 1, with the
Navier–Stokes data [2] included for comparison.

We can observe that for the attenuation part, only the results of the four-velocity model
show a similar trend (i.e., O(h−2)) to the Navier–Stokes data ash → ∞. Meanwhile, for
the sound dispersion case, onceh→∞, the results for the four-velocity model approach the
continuum limit of the sound speed, which is nearly the same as the molecular speed.

To compare with previous experiments by Greenspan [2], we only plot the data from the
four-velocity model in figure 2, together with the data obtained from Pekeriset al [8] and
Lebon and Cloot [23]. Some of the data are also tabulated in table 1 to allow a detailed look.
We can observe that the four-velocity model captures the propagating behaviour of the sound
mode quite well except for in theh < 2 region, while six- and eight-velocity models seem
to only capture the propagating mode of diffusion [5, 14, 24–26]. Possible explanations are
listed below.

(i) A 2n-velocity model has only one velocity modulus, which suffers the same limitations
as, e.g., the approach of Pekeriset al, as was commented on in the introduction. Besides,
because of the discrete nature of the four-velocity model, considering the discrete number
density, our results underestimated the sound attenuation compared with those from
measurements and continuous Boltzmann approaches.

(ii) As the perturbations are relative to the Maxwellians, which are closely related to the
macroscopic state variables [21], these results perhaps verify Gatignol’s comments on the
general 2n-velocity model that forn > 3, there are more collision invariants than physical
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Figure 1. Comparison with the Navier–Stokes approach for the dispersion (upper panel) and
attenuation (lower panel) with respect to the rarefaction parameterh. Calculatedλr : values for the
dispersion; andλi : values for theattenuation.

ones or conservation laws which correspond to the number of macroscopic variables (in 2D,
there are only four—i.e., one mass, two momenta, one energy). Thus there are unphysical
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Figure 2. Comparison with Greenspan’s measurements for the dispersion (upper panel) and
attenuation (lower panel) with respect to the rarefaction parameterh. Calculatedλr : values for the
dispersion; andλi : values for theattenuation.

(spurious) invariants or macroscopic variables forn > 3 [21, 22] which produce the
essential differences between the results of from four- and six- or eight-velocity models.



8826 Aq Kwang-Hua Chu

Table 1. Some of the data compared in figure 2.

h λ Greenspan Four velocity Lebon–Cloot

0.2 λr 0.474 0.711 0.465
λi 0.237 0.035 0.251

0.3 λr 0.503 0.717 0.522
λi 0.256 0.051 0.289

0.5 λr 0.588 0.732 0.66
λi 0.285 0.081 0.279

0.83 λr 0.683 0.763 0.71
λi 0.275 0.114 0.26

0.93 λr 0.693 0.774 0.74
λi 0.266 0.121 0.246

1.60 λr 0.778 0.846 0.83
λi 0.209 0.144 0.19

3.0 λr 0.873 0.928 0.906
λi 0.166 0.124 0.114

4.2 λr 0.911 0.958 0.934
λi 0.138 0.101 0.085

5.5 λr 0.93 0.974 0.95
λi 0.114 0.082 0.08

7.9 λr 0.94 0.987 —
λi 0.085 0.061 —

(iii) The diffusion mode [5, 14, 24–26], or the relatedentropy wave, however, may be found
to have another physical meaning once relevant measurements can be conducted. Up to
now, the measurements available for comparison were all from before the middle of the
1950s [11, 27].

As for the damping of the sound mode, it is seen that the absorption coefficient increases
at small frequencies up to a maximum value ath ∼ 1 and then decreases slowly for high
frequencies. It was pointed out in [27] that at high values ofh there may be a contribution to
the absorption arising from diffusion in the piezoelectric receiver, so the experimental result
for the absorption or attenuation factor should be considered as an upper limit to the actual
value.

To conclude, as regards the results for the sound mode, it has been observed that, whereas
the Navier–Stokes approach provides a good modelling at low frequencies, it is definitely
not adequate at high frequencies withh 6 2—especially as regards the zero dispersion
(phase speed) ash approaches zero. By using the extended irreversible thermodynamics in its
simplest version [11, 23], i.e., with the heat flux and the viscous pressure tensor as the only
extra variables, Lebon and Cloot [23] obtained more satisfactory results for the phase speed.
Unfortunately, their results for the absorption coefficient become even worse than those based
on the Navier–Stokes theory as soon ash 6 1.
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Comparing with the EIT approaches [11, 23, 28] (which normally need to tune a few
constants of the time relaxation), which provide another method for describing the thermal
motion [29], our approach of using the four-velocity model, which is simpler than previous
numerical approaches, works quite well forh > 1.5. Moreover, as the technique of ultrasound
measurement has made progress since the early measurements of Greenspan in the middle of
the 1950s [2, 3], we hope to compare the complete data (especially for the diffusion mode)
from our models in the future with the newest and most reliable experimental ones, which
should filter out the noise in the regime of very smallh. That is because, as commented on
before, earlier measurements, like those for the attenuation, in the regime of very smallh, were
still mixed with much unnecessary noise and many spurious fluctuations.

Meanwhile, the results from our six- and eight-velocity models can also capture well the
propagation of the diffusion mode. The latter results were never derived by using the discrete
kinetic theories [30] and have seldom been presented in the treatment of ultrasound propagation
using continuous kinetic theories since 1965 (as reported by Mason [5]). Previous, rather
complicated, analytical and numerical approaches like those of Pekeriset aland/or Lebon and
Cloot did not produce data on the propagation of the diffusion mode.

Research interest in dilute Bose gases, e.g. equilibrium or non-equilibrium thermo-
dynamics, has recently increased markedly and led to intensive study. Our approach, simpler
and more direct than others for the treatment of hard-sphere gases, could be adapted to this
new kind of problem. The results presented here, like those for the diffusion mode, might also
give more clues as regards how to approach the investigation of the ultrasound propagation of
dilute Bose gases. At least (perhaps not the best use), our presentation here should be useful
to studies of similar or related problems in the microdomain and/or nanodomain [31].
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